Name	me Period					
Unit 4 Dividing Frac	tions Week	of 2/3/20				
Learning Targets from 6 th Grade Common Core	State Standa	ards:				
Lesson 8 How much in each group? (Part 1)						
I can tell when a question is asking for the amount in one group.						
I can use diagrams and multiplication and division equations to represent and answer "how much in each group?" questions.						
Lesson 9 How much in each group? (Part 2)						
I can find the amount in one group in different real-world situations.						
Lesson 10 Dividing by Unit and Non-Unit Fractions						
I can divide a number by a unit fraction 1/b by reasoning with the denominator, which is a whole number.						
\Box I can divide a number by a non-unit fraction a/b by reasoning with the numerator and						
denominator, which are whole numbers.						
This Week's Vocabulary Words: multiplication division quotient	divisor	group	tape diagram			

Homework is due the following day.

Homework is due the following day.					
Day	Class work—All in Spiral using iPad	Homework	Complete	Correct	
Monday	Wrap up Lesson 8 How much in each group? (Part 1) PDF page 29	Pages 1 & 2: Lesson 8 Practice Problems—All	/4	/14	
Tuesday	Lesson 9 How much in each group? (Part 2) PDF page 36	Pages 3 & 4: Lesson 9 Practice ProblemsAll	/4	/19	
Wednesday	Lesson on using the "Giant One" for equivalent fractions—in Notability/spiral	Page 5: Equivalent Fractions Practice ProblemsAll	/4	/6	
Thursday	Lesson 10 Dividing by unit and non-unit fractions PDF page 41	Pages 6 & 7: Lesson 10 Practice ProblemsAll	/4	/20	
Friday	MAPS Mid-year assessment Math and Reading with 1 st period classes	None			
		Total	/16		
		Quality	/4		
		Total	/20		

Homework Quality—Remember, if you don't know how to complete a problem you should read it again and write down the information you have, draw a picture, or write a question you have, please do not leave blank or write "?" or idk. You can also come in and get help before school⊚!

Work is thorough with detailed explanations (2 pts)
Homework is corrected (with additions needed) in a different color pen/pencil (2 pts)

NAME

DATE

PERIOD

Unit 4, Lesson 8

Practice Problems

- 1. For each scenario, use the given tape diagram to help you answer the question. Mark up and label the diagrams as needed.
 - a. Mai has picked 1 cup of strawberries for a cake, which is enough for $\frac{3}{4}$ of the cake. How many cups does she need for the whole cake?

b. Priya has picked $1\frac{1}{2}$ cups of raspberries, which is enough for $\frac{3}{4}$ of a cake. How many cups does she need for the whole cake?

- 2. Tyler painted $\frac{9}{2}$ square yards of wall area with 3 gallons of paint. How many gallons of paint does it take to paint each square yard of wall?
 - a. Write multiplication and division equations to represent the situation.
 - b. Draw a diagram to represent the situation and to answer the question.
- 3. After walking $\frac{1}{4}$ mile from home, Han is $\frac{1}{3}$ of his way to school. What is the distance between his home and school?
 - a. Write multiplication and division equations to represent this situation.
 - b. Use the given diagram to help you answer the question. Mark up and label it as needed.

NAME DATE PERIOD

- 4. Here is a division equation: $\frac{4}{5} \div \frac{2}{3} = ?$
 - a. Write a multiplication equation that corresponds to the division equation.
 - b. Draw a diagram to represent and answer the question.

- a. Write a multiplication equation and a division equation to represent this question.
- b. Find the answer. Draw a diagram, if needed.
- c. Use the multiplication equation to check your answer.

$$56 \div 8$$

$$56 \div 0.000008$$

- b. Explain how you decided the order of the three expressions.
 - c. Find a number n so that $56 \div n$ is greater than 1 but less than 7.

NAME DATE **PERIOD**

Unit 4, Lesson 9

Practice Problems

- 1. A group of friends is sharing $2\frac{1}{2}$ pounds of berries.
 - a. If each friend received $\frac{5}{4}$ of a pound of berries, how many friends are sharing the berries?
 - b. If 5 friends are sharing the berries, how many pounds of berries does each friend
- 2. $\frac{2}{5}$ kilogram of soil fills $\frac{1}{3}$ of a container. Can 1 kilogram of soil fit in the container? Explain or show your reasoning.
- 3. After raining for $\frac{3}{4}$ of an hour, a rain gauge is $\frac{2}{5}$ filled. If it continues to rain at that rate for 15 more minutes, what fraction of the rain gauge will be filled?
 - a. To help answer this question, Diego wrote the division equation $\frac{3}{4} \div \frac{2}{5} = ?$. Explain why this equation does *not* represent the situation.
 - b. Write a multiplication equation and a division equation that does represent the situation.

"Rain Gauge" by Bidgee via Wikimedia Commons. CC BY 3.0.

NAME DATE PERIOD

4. 3 tickets to the museum cost \$12.75. At this rate, what is the cost of:

a. 1 ticket?

- b. 5 tickets?
- 5. Elena went 60 meters in 15 seconds. Noah went 50 meters in 10 seconds. Elena and Noah both moved at a constant speed.
 - a. How far did Elena go in 1 second?
 - b. How far did Noah go in 1 second?
 - c. Who went faster? Explain or show your reasoning.
- 6. The first row in the table shows a recipe for 1 batch of trail mix. Complete the remaining rows with recipes for 2, 3, and 4 batches of the same type of trail mix.

number of batches	cups of cereal	cups of almonds	cups of raisins
1	2	$\frac{1}{3}$	<u>1</u>
2			
3			
4 ′			

Fractions that name the same value are called equivalent fractions, such as $\frac{2}{3} = \frac{6}{9}$. One method for finding equivalent fractions is to use the Multiplicative Identity (Identity Property of Multiplication), that is, multiplying the given fraction by a form of the number 1 such as $\frac{2}{3}$, $\frac{5}{5}$, etc. In this course we call these fractions a "Giant One." Multiplying by 1 does not change the value of a number.

For additional information, see the Math Notes box in Lesson 3.1.1 of the Core Connections, Course 1 text.

Example 1

Find three equivalent fractions for $\frac{1}{2}$.

$$\frac{1}{2} \cdot \frac{52}{2} = \frac{2}{4}$$

$$\frac{1}{2} \cdot \frac{3}{3} = \frac{3}{6}$$

$$\frac{1}{2}$$
 $\frac{4}{4} = \frac{4}{8}$

Example 2

Use the Giant One to find an equivalent fraction to $\frac{7}{12}$ using 96ths: $\frac{7}{12} \cdot 1 = \frac{7}{96}$

Which Giant One do you use?

Since
$$\frac{96}{12} = 8$$
, the Giant One is $\frac{8}{8}$

$$\frac{7}{12} \cdot \frac{18}{8} = \frac{56}{96}$$

Problems

Use the Giant One to find the specified equivalent fraction. Your answer should include the Giant One you use and the equivalent numerator.

$$1_{\frac{4}{3}} \cdot 1_{\frac{4}{3}} \cdot 1_{\frac{15}{15}} = \frac{?}{15}$$

1.
$$\frac{4}{3} \cdot 1 = \frac{?}{15}$$
 2. $\frac{5}{9} \cdot 1 = \frac{?}{36}$ 3. $\frac{9}{2} \cdot 1 = \frac{?}{38}$

3.
$$\frac{9}{2} \cdot \int = \frac{?}{38}$$

$$4. \qquad \frac{3}{7} \cdot \int = \frac{?}{28}$$

4.
$$\frac{3}{7} \cdot 1 = \frac{?}{28}$$
 5. $\frac{5}{3} \cdot 1 = \frac{?}{18}$ 6. $\frac{6}{5} \cdot 1 = \frac{?}{15}$

6.
$$\frac{6}{5} \cdot 1 = \frac{?}{15}$$

NAME

DATE

PERIOD

Unit 4, Lesson 10

Practice Problems

1. Priya is sharing 24 apples equally with some friends. She uses division to determine how many people can have a share if each person gets a particular number of apples. For example, $24 \div 4 = 6$ means that if each person gets 4 apples, 6 people can have apples. Here are some other calculations:

$$24 \div 4 = 6$$

$$24 \div 2 = 12$$

$$24 \div 1 = 24$$

$$24 \div \frac{1}{2} = ?$$

- a. Priya thinks the "?" represents a number less than 24. Do you agree? Explain or show your reasoning.
- b. In the case of $24 \div \frac{1}{2} = ?$, how many people can have apples?
- 2. Here is a centimeter ruler.

- a. Use the ruler to find $1 \div \frac{1}{10}$ and $4 \div \frac{1}{10}$.
 - b. What calculation did you do each time?
- c. Use your work from the first part to find each quotient.

i.
$$18 \div \frac{1}{10}$$

ii.
$$4 \div \frac{2}{10}$$

iii.
$$4 \div \frac{8}{10}$$

3. Find each quotient.

b.
$$5 \div \frac{3}{10}$$

c.
$$5 \div \frac{9}{10}$$

4. Use the fact that $2\frac{1}{2} \div \frac{1}{8} = 20$ to find $2\frac{1}{2} \div \frac{5}{8}$. Explain or show your reasoning.

NAME DATE PERIOD

- 5. It takes one week for a crew of workers to pave $\frac{3}{5}$ kilometer of a road. At that rate, how long will it take to pave 1 kilometer?
- Write a multiplication equation and a division equation that represent the question and then answer the question. Show your reasoning.
 - 6. A box contains $1\frac{3}{4}$ pounds of pancake mix. Jada used $\frac{7}{8}$ pound for a recipe. What fraction of the pancake mix in the box did she use? Explain or show your reasoning. Draw a diagram, if needed.
 - 7. Calculate each percentage mentally.
 - a. 25% of 400
- c. 75% of 200
- e. 5% of 20

- b. 50% of 90
- d. 10% of 8,000

